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Introduction

Basic Result (Casella and Berger, Theorem 2.1.10, p. 54):

For a continuous random variable W , the cumulative distribution
function U = FW (·) is uniformly distributed on [0,1].

Thus, any continuous random variable W can be transformed to a
uniform random variable and conversely, any uniform random variable
can be transformed to a random variable V with any desired
continuous distribution.
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Introduction

This fact, thus, provides an approach for the transformation of data
to any desirable distribution.

In particular, this can be used as an all purpose approach to introduce
normality so that analyses, such as linear model theory based
modeling, can be performed under the usual normality assumptions.

NORTA (NORMAL to ANYTHING) algorithms use this fact
backwards to simulate random numbers from any desired distribution
after generating standard normal variates.
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Introduction

However, one fact that should not be lost in this approach is that the
information about the location and scale is essentially lost, in much
the same way as the information about the shape and the skewness
of the original distribution.

While symmetrized (specifically normally distributed) data are
desirable for data analysis, the approach will therefore, prevent us
from making any inference about the location in most situations.

A common approach to deal with skewed data is through the use of
transformation (to normality). The logarithmic, square-root, arcsine
and more generally, Box-Cox transformations have been the common
tools to artificially induce, among other desirable features, symmetry
for the asymmetric data and have been used extensively in a variety
of statistical problems.
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Introduction
In the multivariate context, when the interest is in studying the
dependence structures and possibly prediction, a generalization of the
approach described above can be extremely useful

and
the purpose of this talk is to introduce the usefulness of our
suggested approach in various multivariate situations.

The objective here is to come up with an approach to transform the
data where classical techniques of multivariate analyses [Specifically,
here for missing data imputation] can be readily adopted for the
transformed data.

Yet, the method should be such, so that inference and especially the
predictions for the transformed data can be brought back to the
original context.
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Multivariate Copula-Transformation

We will first define the concept of copula.

Definition
A function C from a d-dimensional rectangle [0, 1]d to [0, 1] is called
a copula if there is a random vector UUU = (U1,U2, ...,Ud)

′, such that
for i = 1, ..., d , Ui ∼ U(0, 1), the uniform distribution on interval
[0,1] and C (u1, u2, ..., ud)
= P[U1 ≤ u1,U2 ≤ u2, ...,Ud ≤ ud ] where U1,U2, ...,Ud ∈ [0, 1].

Thus, C (·) is essentially a d-dimensional multivariate cumulative
distribution function of d random variables, each distributed
uniformly in the interval [0,1].
The dependence structure is not stated in the definition and cannot
be, in general, specified. It depends on the nature and the joint
behavior of the particular set of the random variables.
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Multivariate Copula-Transformation

More light on this issue is shed by Sklar’s Theorem. Assume our

random variables to be all continuous valued.
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Multivariate Copula-Transformation

Theorem
(Sklar’s Theorem)
A function F : Rd → [0, 1] is the distribution function of some
continuous random vector XXX = (X1,X2, ...,Xd)

′ iff there is a copula
C from [0, 1]d to [0, 1] and d univariate distribution functions
F1,F2, ...,Fd such that

C (F1(x1),F2(x2), ...,Fd(xd)) = F (x1, x2, ..., xd) (1)

for XXX = (X1,X2, ...,Xd)
′ ∈ Rd .

The functions Fi(·) are clearly the (marginal) cumulative distribution
functions of corresponding random variables Xi , i = 1, 2, ..., d . Thus,
copula expresses the dependence among X1,X2, ...,Xd through their
marginal cumulative distribution functions.
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Multivariate Copula-Transformation

It provides a way to express and obtain the joint cumulative
distribution functions through an appropriate copula. Since F (·) is
continuous and hence admits an inverse function F−1(·), it follows
from above that

(X1,X2, ...,Xd)
dist
= F−1C (F1(x1),F2(x2), ...,Fd(xd)), (2)

where dist indicates the equivalence of probability distributions.
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Multivariate Copula-Transformation

From (??) it follows that since Ui = Fi(Xi) is uniformly distributed in
interval [0,1], i = 1, 2, ..., d and since ui = F (xi) =⇒ xi = F−1(ui),
for uuu = (u1, u2, ..., ud)

′, we have,

C (uuu) = C (u1, u2, ..., ud)

= F (F−1
1 (u1),F

−1
2 (u2), ...,F

−1
d (ud)),uuu ∈ [0, 1]d . (3)
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Multivariate Copula-Transformation
Let us concentrate on (??) namely,

C (F1(x1),F2(x2), ...,Fd(xd)) = F (x1, x2, ..., xd)

Let F (·) and G (·) be two d-dimensional multivariate continuous
CDFs, with corresponding marginal CDFs F1(·),F2(·), ..., Fd(·) and
G1(·),G2(·), ...,Gd(·) respectively. Also assume that F (·) and G (·)
both correspond to the same copula function C (·). Thus, with
random vector XXX having the CDF F (·) and random vector YYY having
that as G (·), we have

F (x1, x2, ..., xd) = C (F1(x1),F2(x2), ...,Fd(xd)) (4)

= C (u1, u2, ..., ud) = C (G1(y1),G2(y2), ...,Gd(yd))

= G (y1, y2, ..., yd),

for some y1, y2, ..., yd , so that G−1(yi) = ui , i = 1, 2, ..., d where
G−1(·) is the inverse function of G (·).
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Multivariate Copula-Transformation

Note that the only assumption here is that the F (·) and G (·) share
the common copula. By Sklar’s Theorem, it also follows that given
F (·) (or G (·)), the copula is unique.

Thus, if G (·) is desired to be a particular cumulative distribution
function then it automatically determines the choice of C (·).
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Multivariate Copula-Transformation

The above calculation succinctly provides, an approach to transform
the data on multivariate random vector XXX having cumulative
distribution function F (·) to another random vector YYY having the
cumulative distribution function G (·). More succinctly, it can be
described, analogous to (??) as,

(Y1,Y2, ...,Yd)
dist
= G−1C (F1(X1),F2(X2), ...,Fd(Xd)). (5)
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Multivariate Copula-Transformation

This is pictorially depicted in Figure on next slide.

For our work, with an intention to enable us to do classical
multivariate modeling, the function G (·) will usually be a multivariate
normal cumulative distribution function. Consequently, the choice of
C (·) must be a Gaussian copula.
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Multivariate Copula-Transformation

As a graphical representation for two given distribution functions say,
F (·)F (·)F (·) and G (·)G (·)G (·) with common copula say C (·)C (·)C (·), our transformation
works as,

F (·)F (·)F (·) −→ C (·)C (·)C (·) −→ G (·)G (·)G (·)

Figure 1
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Multivariate Copula-Transformation

Accordingly, implicit assumption on the distribution function F (·) of
our raw data is that even though F (·) itself may not be multivariate
normal distribution function, its copula function is Gaussian.

Such an assumption is very reasonable.

Of course, for the data analysis, we must resort to the empirical
version of F (·). computed from data.
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Multivariate Copula-Transformation

Thus, in essence, we make the assumption that the common copula
is a Gaussian copula Φ(µµµ, ΣΣΣ)(·),

In principle, the choices of mean vector µµµ and covariance matrix ΣΣΣ
are arbitrary.

Since our interest is in doing the multivariate analyses of dependence,
we will choose ΣΣΣ cautiously to retain the essential dependence
features of data.

On the other hand, since the choice of µµµ is often unimportant in such
situations, we will take it’s value to be the zero vector.
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Multivariate Copula-Transformation

As a graphical representation for a given distribution of data, say DDD ,
our transformation works as

DDD −→ UUU −→ NNN

and in a reverse direction as

NNN −→ UUU −→ DDD ,

where UUU represents a multivariate distribution in which each
marginal is uniform on [0,1] and NNN represents the chosen
multivariate normal distribution.
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Multivariate Copula-Transformation

As a result, the copula used is the Gaussian copula defined by,

CΣΣΣ(u1, ..., ud) = ΦΣΣΣ(Φ
−1(u1), ...,Φ

−1(ud))

where Φ(·) is the distribution function of (univariate) standard
normal random variable and ΦΣΣΣ(·) is the d-variate standard normal
cumulative distribution function with mean vector 000 and covariance
matrix ΣΣΣ.

Regression Modeling in Copula space is crucial for our missing
data imputation approach. So we will illustrate that first.
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Copula Transformed Multiple Regression: Data

Sets

i) Wicklin’s Data (2013):Taken from Wicklin’s book, where we
have four random variables, jointly exhibiting dependence, but
each with marginal distributions which are functionally very
different.

Specifically, we have the response variable y distributed as
standard lognormal (µ = 0, σ = 1) and explanatory variables x1,
x2 and x3 respectively, distributed as standard normal, uniform
on [0,1] and standard exponential (λ = 1).

Clearly, considerable skewness is present in y and x3. Also, the
conditional distribution of y given x1, x2 and x3 is clearly not
normal. A total of 100 observations are available.
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Copula Transformed Multiple Regression: Data

Sets

Other Data sets (not discussed):

ii) Financial Indexes Data

iii) SENIC Data

iv) Prostate Cancer Data

v) Real Estate Sales Data

vi) Used Car Data

vii) University Admissions Data
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Copula Transformed Multiple Regression: Analyses

For all the above data set we will fit the multiple linear regression
model regressing y on k explanatory variables x1, x2, ..., xk . Clearly,
the value of k is different for various data sets. No cross product or
higher degree polynomial terms are assumed.

The objective is to compare the regression models fitted on the
original data with those obtained by fitting the equivalent model on
the corresponding Gaussian-copula transformed data.
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Copula Transformed Multiple Regression: Analyses

Specifically, since the number of observations and the functional
forms of the models will be the same in the two situations, the
coefficient of determination R2 values can be compared, along with
the statistical significance of the models.

However, from a practical point of view, quality of prediction is also
important and thus, we will also compare the prediction errors as well
as the prediction intervals.

[After all we are going to predict the missing values so quality
of prediction better be superior.]

For a fair comparison, these two will be obtained for the original
response variable.
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Copula Transformed Multiple Regression: Analyses

Here we naturally replace C = CRRR (Gaussian Copula), G = ΦRRR (as
we are using Gaussian-copula transformation) and F (·) is the

empirical distribution function of the bivariate data on

[
y
x

]
.

RRR is the correlation matrix.
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Copula Transformed Multiple Regression: Analyses

To make these predictions independent of the model fitting process,
in all cases, divide the data into training and test sets by respectively
assigning the odd (even) numbered observations to the training (test)
sets.

Since the Gaussian copula is used, data on all the transformed
variables have zero mean and unit standard deviation.

That is however a non-issue, since, R2 as well as F -test for the model
are invariant of such a transformation.

Again, since predictions are obtained in both the cases, for the data
on original scale, such a location shift and scaling change do not
figure in the comparison.
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Copula Transformed Multiple Regression:

Algorithm

Algorithmically, the following steps are adopted in the sequence.

1. Transform the training raw data on random vector
(
Y
XXX

)
to data

on uniform random variables UY ,UX1 , . . . ,UXk
using the

empirical cumulative distribution function estimated from the
data. From the estimated covariance matrix, a correlation
matrix for

(
Y
XXX

)
and the corresponding empirical correlation

matrix ΣΣΣ of UUU = (UY ,UX1 , . . . ,UXk
)′ are obtained. These

provide the estimates of the copula parameters.
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Copula Transformed Multiple Regression:

Algorithm

2. This is our target correlation matrix and we want, more or less,
the same correlation among the multivariate uniform variables
and among the multivariate normal transformed variables. Using
the inverse multivariate normal cumulative distribution function
on UUU , we obtain the transformed data which are jointly
distributed as the multivariate normal. We denote this by

(
Y ∗

X∗X∗X∗

)
.
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Copula Transformed Multiple Regression:

Algorithm

3. We fit separately, the two models which are functionally similar,
yet for the above two different data sets. Specifically, these are
(* indicates the copula-transformed data),

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ϵ (6)

and
y ∗ = β∗

0 + β∗
1x

∗
1 + β∗

2x
∗
2 + · · ·+ β∗

kx
∗
k + ϵ∗. (7)
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Copula Transformed Multiple Regression:

Algorithm

4. For predictions, comparison is appropriate only in the original
scale. That is readily available for the first model.

However, the second model is fit for transformed data and so
original scale is lost. This is, however, of little concern as the
correspondence between the observations in the two data sets is
one to one, and thus for the test data, predicted values of y can
be obtained through its correspondence with y ∗.
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Copula Transformed Multiple Regression:

Algorithm

Let the corresponding two predicted values of y be ŷ and ŷc
respectively. Then for the test data set, the two sum of squared
prediction errors (SSPE) are given by

SSPERaw =
∑

test data

(yi − ŷi)
2 (8)

and
SSPECopula =

∑
test data

(yi − ŷc,i)
2. (9)
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Copula Transformed Multiple Regression:

Algorithm

To obtain the prediction interval (say for a future observation) on the
original scale and using model in (??), a little more care is needed.
For a given XXX = xxx f (and hence X ∗X ∗X ∗ = xxx∗f ), denote the predicted value
of y ∗ using model (??) by ŷ ∗

f and let the corresponding prediction
interval be (ŷ ∗

f ,L , ŷ ∗
f ,U). Since ŷ ∗

f , ŷ
∗
f ,L and ŷ ∗

f ,U are the quantities
about a future incoming observation, correspondence may not be
readily available within the data set.
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Copula Transformed Multiple Regression: Wicklin’s

Data

We circumvent this problem by simulating a large number of
observations from the k− dimensional multivariate uniform
distribution corresponding to our copula, and compute the
corresponding values of y and y ∗. Let these simulated quantities be
denoted by placing a tilde (∼) above the corresponding variable.

If ŷ ∗
f is sandwiched between two such (closest) simulated values, say

ỹ ∗
t and ỹ ∗

t+1, then the predicted value of y , say ŷc,f can be obtained
by interpolation from ỹt and ỹt+1, each of which has one to one
correspondence with ỹ ∗

t and ỹ ∗
t+1 via ũy ,t and ũy ,t+1.

The same procedure is followed to interpolate the two prediction
limits corresponding to ŷ ∗

f ,L and ŷ ∗
f ,U . Accordingly, a prediction

interval (ŷc,f ,L , ŷc,f ,U) is obtained.
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Copula Transformed Multiple Regression: Wicklin’s

Data

We have done this for our data sets for all the observations and
plotted them against the serial number, which represents the
increasing order of the (raw) data, on the response variables.

Note that this approach will also be applicable and should be
followed, in the real situations when the prediction is an important
objective.
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Copula Transformed Multiple Regression: Wicklin’s

Data

I will describe the analysis of Wicklin’s data in detail so as to fully
appreciate the steps of the modeling and interpretation.

The data set, consisting of 100 observations, is first arranged in the
increasing order of the response variable.

We have divided the data into training data and test data, each
consisting of fifty observations. Increasing order of values on response
variable and taking alternative values in the training data and test
data, respectively, ensure, that the two data sets are largely similar
and represent the same underlying population.

R2, Adjusted R2, p-values and F -tests corresponding to model are
obtained for the training data. For prediction, test data will be used.
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Copula Transformed Multiple Regression: Wicklin’s

Data

Residual Plots:
Figures 2 and 3 respectively represent the residual plots for the
training data for the traditional multiple regression analysis of raw
data and that for the Gaussian copula transformed data. The
patterns in Figure 2 clearly indicate non-randomness and a poor fit.
On the contrary, the residual plot is near-ideal in Figure 3.
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Copula Transformed Multiple Regression: Wicklin’s

Data

Figure: Figure 2: Wicklin’s data: Scatter plot of residuals for raw training
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Copula Transformed Multiple Regression: Wicklin’s

Data

Figure: Figure 3: Wicklin’s data: Scatter plot of residuals for copula
training dataRavi Khattree Distinguished University Professor of Applied Statistics Co-Director, Center for Data Sciences and Big Data Analytics Participating Member, Center for Biomedical Research Oakland University (Oakland University)Non-Normal Imputation Marquette U., Oct. 25, 2024 38 / 1



Copula Transformed Multiple Regression: Wicklin’s

Data

QQ Plots:
The same contrast between the two approaches is found between the
two Q − Q plots, given in Figures 4 and 5 for the corresponding
residuals.
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Copula Transformed Multiple Regression: Wicklin’s

Data

Figure: Figure 4: Wicklin’s data: Residual Q − Q plot for the raw training
data
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Copula Transformed Multiple Regression: Wicklin’s

Data

Figure: Figure 5: Wicklin’s data: Residual Q − Q plot for the copula
training data
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Copula Transformed Multiple Regression: Wicklin’s

Data

Table 1 gives the values corresponding to model fit and the statistical
significance of the model. Drastic improvement in R2 (38.86% vs.
92.47%) and Adjusted R2 values is established. The same can be
said about model F -statistics and corresponding p-values.

Ravi Khattree Distinguished University Professor of Applied Statistics Co-Director, Center for Data Sciences and Big Data Analytics Participating Member, Center for Biomedical Research Oakland University (Oakland University)Non-Normal Imputation Marquette U., Oct. 25, 2024 42 / 1



Copula Transformed Multiple Regression: Wicklin’s

Data

Table: Table 1: Model fit and model significance Statistics: Wicklin’s
Data (n = 50 for Training Data)

Model Based on

Statistics Raw Data Gaussian Copula
Transformed Data

R2 0.389 0.923

Adjusted R2 0.349 0.920

Model
F -Stat df (3,46) 9.740 188.280

p-Value < 0.0001 <<< 0.0001

Average Squared Prediction 6.997 3.383

Error (Test Data n = 50)
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Copula Transformed Multiple Regression: Wicklin’s

Data

Table 2, shows point predictions for the data along with
corresponding 95% prediction intervals.

For the sake of brevity, only the first ten, last ten and middle ten
observations of test data are presented. The superiority of Gaussian
copula based approach is readily seen. All the point predictions using
this approach are closer to the true observed responses. For the
observation number 50 of the table, the observed value of the
response variable is relatively very large.
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Copula Transformed Multiple Regression: Wicklin’s

Data

Table: Table 2A: Wicklin’s data: Comparison between raw and copula
regression models for test data

Obs. y ŷ ŷ∗ 95% Raw Pred. Int. 95% Copula Pred. Int.

1 0.140 -1.265 0.144 ( -5.050 , 2.521 ) ( 0.132 , 0.271 )
2 0.248 -0.359 0.248 ( -4.076 , 3.359 ) ( 0.133 , 0.356 )
3 0.249 0.085 0.284 ( -3.496 , 3.666 ) ( 0.168 , 0.396 )
4 0.283 0.063 0.334 ( -3.565 , 3.691 ) ( 0.247 , 0.492 )
5 0.293 0.148 0.284 ( -3.440 , 3.736 ) ( 0.168 , 0.396 )
6 0.316 0.539 0.374 ( -2.998 , 4.076 ) ( 0.254 , 0.615 )
7 0.353 1.015 0.360 ( -2.553 , 4.583 ) ( 0.249 , 0.570 )
8 0.369 -0.913 0.306 ( -4.703 , 2.876 ) ( 0.222 , 0.484 )
9 0.385 1.536 0.485 ( -2.015 , 5.088 ) ( 0.321 , 0.913 )
10 0.396 1.268 0.415 ( -2.268 , 4.803 ) ( 0.291 , 0.761 )
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Copula Transformed Multiple Regression: Wicklin’s

Data

Table: Table 2B: Wicklin’s data: Comparison between raw and copula
regression models for test data

Obs. y ŷ ŷ∗ 95% Raw Pred. Int. 95% Copula Pred. Int.

21 0.751 1.781 0.734 ( -1.762 , 5.324 ) ( 0.396 , 1.217 )
22 0.770 -0.284 0.853 ( -4.034 , 3.467 ) ( 0.437 , 1.567 )
23 0.822 0.455 0.923 ( -3.194 , 4.105 ) ( 0.487 , 1.570 )
24 0.854 1.967 0.749 ( -1.547 , 5.480 ) ( 0.398 , 1.350 )
25 0.922 1.731 1.079 ( -1.807 , 5.269 ) ( 0.669 , 2.306 )
26 0.933 2.989 0.965 ( -0.583 , 6.560 ) ( 0.540 , 1.771 )
27 0.981 2.526 1.414 ( -1.030 , 6.082 ) ( 0.801 , 2.758 )
28 1.002 2.852 0.849 ( -0.745 , 6.448 ) ( 0.451 , 1.498 )
29 1.078 1.230 0.918 ( -2.321 , 4.780 ) ( 0.487 , 1.564 )
30 1.133 2.267 1.207 ( -1.338 , 5.872 ) ( 0.701 , 2.686 )
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Copula Transformed Multiple Regression: Wicklin’s

Data

Table: Table 2C: Wicklin’s data: Comparison between raw and copula
regression models for test data

Obs. y ŷ ŷ∗ 95% Raw Pred. Int. 95% Copula Pred. Int.

41 2.689 1.925 2.685 ( -1.627 , 5.478 ) ( 1.212 , 4.758 )
42 2.751 3.061 3.191 ( -0.489 , 6.612 ) ( 1.563 , 7.035 )
43 2.763 3.589 2.752 ( -0.007 , 7.186 ) ( 1.397 , 5.562 )
44 3.456 1.830 4.112 ( -1.726 , 5.387 ) ( 1.865 , 8.987 )
45 3.951 4.698 4.625 ( 0.914 , 8.481 ) ( 2.559 , 11.435 )
46 4.290 3.753 2.758 ( 0.103 , 7.402 ) ( 1.400 , 5.999 )
47 4.883 3.236 4.860 ( -0.383 , 6.855 ) ( 2.690 , 12.911 )
48 6.952 3.790 5.731 ( 0.068 , 7.513 ) ( 2.747 , 16.067 )
49 9.133 3.052 9.577 ( -0.499 , 6.604 ) ( 4.236 , 20.029 )
50 20.029 4.557 7.294 ( 0.809 , 8.305 ) ( 3.426 , 18.878 )
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Copula Transformed Multiple Regression: Wicklin’s

Data

For Obs. 50: Observed response is very large; Both approaches
underpredict the true response. Yet, the Gaussian-copula based
prediction is still closer.

The prediction intervals as given in Table 2 and also graphed in
Figures 6 and 7, further show that the prediction intervals are usually
(and considerably) narrower when the approach is based on Gaussian
copula, as compared to the raw data based regression.

The only few exceptions occur for the later few observations, but as
seen in Table 2 for the last two observations, the prediction intervals
based on usual regression analysis of data do not even contain the
true observed value, while those based on the copula-regression
approach do so for all observations except the last one.
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Copula Transformed Multiple Regression: Wicklin’s

Data

Figure: Figure 6: Wicklin’s data: predicted values and prediction interval
graphs for the raw test data
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Copula Transformed Multiple Regression: Wicklin’s

Data

Figure: Figure 7: Wicklin’s data: Predicted values and prediction interval
graphs for the copula test data
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Copula Transformed Multiple Regression: Other

Data Sets

The residuals from the regression for the raw data for many of the
datasets indicated earlier exhibit the violation of multivariate
normality and linearity of regression.

The copula transformation to multivariate normality all together
circumvents these issues rather than diagnosing and correcting each
of them one by one. As Cherubini, Gobbi, Mulinacci and Romagnoli
in their book (p. 30), explicitly point out,

Ravi Khattree Distinguished University Professor of Applied Statistics Co-Director, Center for Data Sciences and Big Data Analytics Participating Member, Center for Biomedical Research Oakland University (Oakland University)Non-Normal Imputation Marquette U., Oct. 25, 2024 51 / 1



Copula Transformed Multiple Regression: Wicklin’s

Data

“ · · · We may use the Gaussian copula whenever we want to preserve
a Gaussian kind of dependence, even though the marginal
distributions are not Gaussian. This dependence structure is radially
symmetric and does not display tail dependence. So, we may use it if
we want to link together variables whose distributions may well be
assymetric and ‘fat-tailed’, but with a dependence structure that does
not change with · · · .”

In fact, this is the property which makes our approach a “general
purpose” one. This simply makes the regression model realistic and
inference meaningful for the transformed data and due to one-to-one
correspondence with original raw data.
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Copula Transformed Multiple Regression: Wicklin’s

Data

Table: Table 3: A comparison of the two regression models for various
data sets (R = Raw data; G-C = Gaussian Copula Transformed)

Model Est. Skewness Adj. p-Val Ave Sqrd

Sr. Data based Mardia’s PC R2 R2 Model Pred Err

No. ona Skewness (β̂) Skewness (η̂)b (Test Data)

1. Wicklin’s
ntraining = 50 R 35.724 0.412 0.389 0.349 < 0.0001 6.997
ntest = 50 G-C 0.439 0.024 0.923 0.920 < 0.0001 3.383

2. Financial Indexes
ntraining = 508 R 1.984 0.019 0.747 0.744 < 0.0001 0.469
ntest = 507 G-C 0.914 0.011 0.741 0.737 < 0.0001 0.447

3. Senic
ntraining = 56 R 30.223 0.293 0.615 0.550 < 0.0001 1.387
ntest = 56 G-C 12.303 0.067 0.736 0.692 < 0.0001 1.168

4. Prostate Cancer
ntraining = 49 R 93.659 0.865 0.581 0.532 < 0.0001 1249.980
ntest = 48 G-C 8.108 0.056 0.637 0.595 < 0.0001 1290.960

5. Real Estate Sales
ntraining = 261 R 12.023 0.398 0.734 0.728 < 0.0001 4717109105
ntest = 261 G-C 2.848 0.047 0.789 0.784 < 0.0001 444560521

6. Used Car
ntraining = 21 R 25.123 0.564 0.606 0.536 0.0010 2821.570
ntest = 21 G-C 13.695 0.113 0.661 0.601 0.0003 1090.170

7. University Admissions
ntraining = 353 R 2.272 0.124 0.189 0.182 < 0.0001 0.311
ntest = 352 G-C 1.237 0.103 0.257 0.251 < 0.0001 0.307

a R: Model fitted on raw data; G-C: Model fitted on Gaussian-Copula
transformed data.

b For definition, see Khattree and Bahuguna (2018).
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Imputing the missing values through copula

transformation

Denote the fully observed variables (complete covariates) by
X = (Xobs,Xmis)

′ and variable with missing values by
Y = (Yobs,Ymis)

′, where Xobs and Xmis represent the subset of X for
observed data Yobs and missing data Ymis , respectively.

Assume MCAR (Missing completely at random) scheme.
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Imputing the missing values through copula

transformation

Incomplete Data
(X,Y )

Uniform Data
(UX,UY )

Standard Normal Data
(SX, SY )

Standard Normal Data
(SX, S

∗
Y )

Uniform Data
(UX,U

∗
Y )

Imputed Data
(X,Y ∗)

U = Fi (·) S = Φ−1(·)

U = Φ(·)Y ∗ = F−1
Y (·)

Nomalitity-based Imputation

Figure: Figure 8: Procedure of imputation implementation using copula transformed data.
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Imputing the missing values through copula

transformation

Algorithm - Univariate Missing Data Pattern:

Transform complete covariates X to uniformly distributed data
UX by empirical distribution.

Transform variable Y to uniformly distributed data UY by
empirical distribution which uses only observed data Yobs .

Convert the data (UX,UY ) to standard normal data (SX, SY )
using standard inverse multivariate normal cumulative
distribution. That is, for each column vector Si = Φ−1(Ui). At
this stage, the data set (SX, SY ) are viewed as following
multivariate normal distribution.
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Imputing the missing values through copula

transformation

Use one of the imputation procedures (e.g. regression, MCMC,
FCS) as desired, to impute all missing values and obtain dataset
(SX, S

∗
Y ) with imputed data.

Back-transform the filled-in data to original scale via
U∗
Y = Φ(S∗

Y ) according to the inverse of empirical marginal
distribution of Y , i.e., Y ∗ = F−1

Y (U∗
Y ).
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Imputing the missing values through copula

transformation
We apply the Iman-Conover method to generate skewed multivariate
datasets.

The reason we chose this method is that we can specify the marginal
distribution of each variable and also the correlation structure.

We design two groups for multivariate data setting with marginals of
components as follows.

Table: Table 7: Marginal distributions of simulated data sets using
Iman-Conover method

Group X1 X2 X3 X4

1 Log-normal (0, σ) Pareto (1,1) Normal (0, 1) Uniform (0, 1)
2 Log-normal (0, σ) Normal (0,1) Exp (1) Uniform (0, 1)
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Imputing the missing values through copula

transformation

We select X1 as missing variate under MCAR. In above, σ is set as
1.0, 2.0 and 3.0.

In each case, the following correlation structures are used.

Obviously, the data generated from above groups are clearly
non-normal and X1 has larger skewness as σ increases.

Corr1 =


1 0.75 −0.7 0

0.75 1 −0.95 0
−0.7 −0.95 1 −0.2
0 0 −0.2 1

 Corr2 =


1 0.78 −0.67 0.78

0.78 1 −0.89 0.61
−0.67 −0.89 1 −0.24
0.78 0.61 −0.24 1



Corr3 =


1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1

 where ρ is set as 0.5, 0.6, 0.7, 0.8, and 0.9.
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Imputing the missing values through copula

transformation

The sample size is taken as 100 and the number of missing cases as
5.

To evaluate the quality of imputation, simulate each scenario
NSIM=1, 000 times and k imputation(s) and compute the mean of
the sum of squared residuals by

MSSR =
1

NSIM

NSIM∑ k∑
m=1

5∑
i=1

(
X

impt(m)
1i − X true

1i

)2

.

where X
impt(m)
1i is the m-th imputed value for the i -th missing value

X1i and X true
1i is the true observed value of X1i . Here k = 1 for single

imputation and k > 1 for multiple imputations.
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Imputing the missing values through copula

transformation

Table: Table 8: Comparison between original data and copula-transformed
data using single imputation for Group 1

σ Correlation MSSR % SSR
Structure Orig.(nor.) Cop-tran. Ratio (O/C) (O > C)

1.0

Corr1 26.25 13.12 2.00 61.6
Corr2 505.59 5.52 91.60 88.3

Corr3(ρ = 0.5) 60.42 16.06 3.76 56.4
Corr3(ρ = 0.9) 268.67 6.69 40.16 71.7

2.0

Corr1 6,444.07 3,625.55 1.78 71.1
Corr2 84,351.99 2,799.91 30.13 89.0

Corr3(ρ = 0.5) 12,519.63 3,851.05 3.25 67.2
Corr3(ρ = 0.9) 46,791.20 2,936.43 15.93 80.1

3.0

Corr1 3,594,039.00 1,768,944.55 2.03 79.0
Corr2 13,369,528.18 1,710,317.53 7.82 90.4

Corr3(ρ = 0.5) 5,349,742.97 1,792,109.32 2.99 77.8
Corr3(ρ = 0.9) 10,570,811.67 1,685,064.24 6.27 85.3
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Imputing the missing values through copula

transformation

Table: Table 9: Comparison between original data and copula-transformed
data using single imputation for Group 2

σ Correlation MSSR % SSR
Structure Orig.(nor.) Cop-tran. Ratio (O/C) (O > C)

1.0

Corr1 13.64 13.27 1.03 58.3
Corr2 12.38 6.20 2.00 92.0

Corr3(ρ = 0.5) 16.29 16.24 1.00 55.4
Corr3(ρ = 0.9) 8.70 6.48 1.34 72.2

2.0

Corr1 4,141.31 3,614.82 1.15 73.6
Corr2 4,220.18 3,273.75 1.29 91.2

Corr3(ρ = 0.5) 4,264.53 3,851.76 1.11 70.2
Corr3(ρ = 0.9) 4,197.88 2,793.05 1.50 84.1

3.0

Corr1 2,773,953.52 1,760,982.56 1.58 81.7
Corr2 2,873,573.64 1,885,597.04 1.52 91.0

Corr3(ρ = 0.5) 2,603,019.87 1,790,836.43 1.45 80.1
Corr3(ρ = 0.9) 3,436,021.98 1,604,055.17 2.14 88.4
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Imputing the missing values through copula

transformation

Table: Table 10: Comparison between original data and
copula-transformed data using FCS Regression multiple imputation for
Group 1

σ Correlation MSSR % SSR
Structure Orig.(nor) Cop.-tran. Ratio (O/C) (O > C)

1.0

Corr3(ρ = 0.5) 405.76 125.18 3.24 85.40%
Corr3(ρ = 0.6) 310.23 112.44 2.76 84.10%
Corr3(ρ = 0.7) 314.34 97.80 3.21 83.90%
Corr3(ρ = 0.8) 3,195.58 77.38 41.30 85.20%
Corr3(ρ = 0.9) 1,373.60 51.55 26.65 87.90%

2.0

Corr3(ρ = 0.5) 104,406.86 42,081.38 2.48 85.20%
Corr3(ρ = 0.6) 193,498.66 40,986.46 4.72 85.50%
Corr3(ρ = 0.7) 210,846.48 40,019.30 5.27 85.30%
Corr3(ρ = 0.8) 491,084.91 36,171.96 13.58 86.70%
Corr3(ρ = 0.9) 260,022.58 28,639.43 9.08 89.20%

3.0

Corr3(ρ = 0.5) 96,342,688.72 46,027,573.53 2.09 86.20%
Corr3(ρ = 0.6) 224,245,845.70 45,842,238.39 4.89 86.30%
Corr3(ρ = 0.7) 247,254,700.98 46,013,063.35 5.37 86.50%
Corr3(ρ = 0.8) 126,392,828.10 44,373,966.34 2.85 87.80%
Corr3(ρ = 0.9) 113,277,135.61 37,978,413.33 2.98 90.00%
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Imputing the missing values through copula

transformation

Table: Table 11: Comparison between original data and
copula-transformed data using FCS Regression multiple imputation for
Group 2

σ Correlation MSSR % SSR
Structure Orig.(nor) Cop.-tran. Ratio (O/C) (O > C)

1.0

Corr3(ρ = 0.5) 164.68 123.08 1.34 85.00%
Corr3(ρ = 0.6) 149.42 109.95 1.36 83.00%
Corr3(ρ = 0.7) 132.64 95.48 1.39 82.20%
Corr3(ρ = 0.8) 112.58 79.57 1.41 83.10%
Corr3(ρ = 0.9) 84.70 53.40 1.59 86.40%

2.0

Corr3(ρ = 0.5) 56,391.21 39,703.39 1.42 86.80%
Corr3(ρ = 0.6) 56,417.01 37,341.96 1.51 86.30%
Corr3(ρ = 0.7) 55,458.96 35,888.29 1.55 86.60%
Corr3(ρ = 0.8) 53,648.33 39,250.03 1.37 86.50%
Corr3(ρ = 0.9) 50,264.93 30,896.51 1.63 90.30%

3.0

Corr3(ρ = 0.5) 74,206,031.68 44,532,451.31 1.67 86.90%
Corr3(ρ = 0.6) 77,116,532.29 42,631,176.04 1.81 87.50%
Corr3(ρ = 0.7) 76,957,607.66 41,943,270.76 1.83 88.00%
Corr3(ρ = 0.8) 75,842,964.49 55,855,584.64 1.36 87.70%
Corr3(ρ = 0.9) 75,184,163.76 42,523,936.26 1.77 90.80%
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Imputing the missing values through copula

transformation

Table: Table 12: Comparison between original data and
copula-transformed data using MCMC multiple imputation for Group 1

σ Correlation MSSR % SSR
Structure Orig.(nor) Cop.-tran. Ratio (O/C) (O > C)

1.0

Corr3(ρ = 0.5) 300.95 132.50 2.27 60.00%
Corr3(ρ = 0.6) 264.60 113.77 2.33 64.70%
Corr3(ρ = 0.7) 276.81 95.13 2.91 68.40%
Corr3(ρ = 0.8) 211.99 72.71 2.92 74.10%
Corr3(ρ = 0.9) 450.31 47.32 9.52 80.50%

2.0

Corr3(ρ = 0.5) 71,610.82 36,851.77 1.94 66.10%
Corr3(ρ = 0.6) 156,457.61 34,240.23 4.57 70.20%
Corr3(ρ = 0.7) 171,850.60 32,943.64 5.22 75.00%
Corr3(ρ = 0.8) 60,038.31 26,745.73 2.24 79.40%
Corr3(ρ = 0.9) 131,115.17 21,115.43 6.21 83.90%

3.0

Corr3(ρ = 0.5) 51,837,663.26 23,896,573.91 2.17 70.10%
Corr3(ρ = 0.6) 165,243,871.10 23,148,399.65 7.14 73.80%
Corr3(ρ = 0.7) 183,802,007.11 23,891,866.47 7.69 77.10%
Corr3(ρ = 0.8) 48,189,008.89 16,717,322.02 2.88 80.60%
Corr3(ρ = 0.9) 67,349,495.86 13,494,377.61 4.99 85.50%

Ravi Khattree Distinguished University Professor of Applied Statistics Co-Director, Center for Data Sciences and Big Data Analytics Participating Member, Center for Biomedical Research Oakland University (Oakland University)Non-Normal Imputation Marquette U., Oct. 25, 2024 65 / 1



Imputing the missing values through copula

transformation

Table: Table 13: Comparison between original data and
copula-transformed data using MCMC multiple imputation for Group 2

σ Correlation MSSR % SSR
Structure Orig.(nor) Cop.-tran. Ratio (O/C) (O > C)

1.0

Corr3(ρ = 0.5) 127.54 132.10 0.97 57.60%
Corr3(ρ = 0.6) 115.44 113.55 1.02 61.10%
Corr3(ρ = 0.7) 102.34 94.08 1.09 65.30%
Corr3(ρ = 0.8) 86.99 74.35 1.17 72.20%
Corr3(ρ = 0.9) 65.26 48.47 1.35 81.20%

2.0

Corr3(ρ = 0.5) 39,757.02 35,230.30 1.13 67.10%
Corr3(ρ = 0.6) 39,631.01 30,936.11 1.28 69.00%
Corr3(ρ = 0.7) 38,944.15 27,789.97 1.40 73.10%
Corr3(ρ = 0.8) 38,106.04 29,270.04 1.30 79.20%
Corr3(ρ = 0.9) 35,414.91 25,431.77 1.39 84.30%

3.0

Corr3(ρ = 0.5) 43,374,578.45 22,551,396.98 1.92 71.60%
Corr3(ρ = 0.6) 44,902,158.06 19,198,351.45 2.34 72.20%
Corr3(ρ = 0.7) 44,977,065.21 17,619,423.92 2.55 77.10%
Corr3(ρ = 0.8) 45,876,052.72 30,256,223.22 1.52 80.60%
Corr3(ρ = 0.9) 44,235,290.84 29,549,312.57 1.50 85.50%
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Conclusions

Much of the dependence based multivariate analyses for
nonnormal data can be done using the copula transformation.
However information about marginals is lost.

Similar work has been done for principal component analyses,
factor analyses, structural equation modeling.

For missing data imputation for nonnormal situations, this
approach is very handy. Further extensive studies showed that
(for multivariate Lomax distribution) results under copula
transformation are as good as those obtained by imputation by
conditional expectations (assuming MCAR).

Comparison of imputation done by our transformation to
normality and that done by Box-Cox transformation showed our
approach is much superior.
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