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We work with subsets of N (usually denoted as ω) and study their
relative computational complexity.

De�nition

A reducibility is a transitive re�exive relation ≤r on P(ω) (so
that A ≤r B expresses that B �can compute� A).

A,B ⊆ ω are r -equivalent (written A ≡r B) if A ≤r B and
B ≤r A. (A and B have �equal computational content�.)

The r -degree of A is degr (A) = {B | A ≡r B}.
The global r -degree structure is the partial order

Dr = (P(ω)/≡r , ≤),

where ≤ is induced by the pre-partial order ≤r .
Sometimes, we consider local r -degree structures

Sr = (S/≡r , ≤)

for a (usually countable) subfamily S ⊂ P(ω).

Ste�en Lempp Degree Structures and Their Finite Substructures



De�nitions and Examples
Degree Theory

Fragments of the Theory

Reducibilities and Degrees
Examples of Degree Structures

We work with subsets of N (usually denoted as ω) and study their
relative computational complexity.

De�nition

A reducibility is a transitive re�exive relation ≤r on P(ω) (so
that A ≤r B expresses that B �can compute� A).

A,B ⊆ ω are r -equivalent (written A ≡r B) if A ≤r B and
B ≤r A. (A and B have �equal computational content�.)

The r -degree of A is degr (A) = {B | A ≡r B}.
The global r -degree structure is the partial order

Dr = (P(ω)/≡r , ≤),

where ≤ is induced by the pre-partial order ≤r .
Sometimes, we consider local r -degree structures

Sr = (S/≡r , ≤)

for a (usually countable) subfamily S ⊂ P(ω).

Ste�en Lempp Degree Structures and Their Finite Substructures



De�nitions and Examples
Degree Theory

Fragments of the Theory

Reducibilities and Degrees
Examples of Degree Structures

We work with subsets of N (usually denoted as ω) and study their
relative computational complexity.

De�nition

A reducibility is a transitive re�exive relation ≤r on P(ω) (so
that A ≤r B expresses that B �can compute� A).

A,B ⊆ ω are r -equivalent (written A ≡r B) if A ≤r B and
B ≤r A. (A and B have �equal computational content�.)

The r -degree of A is degr (A) = {B | A ≡r B}.
The global r -degree structure is the partial order

Dr = (P(ω)/≡r , ≤),

where ≤ is induced by the pre-partial order ≤r .
Sometimes, we consider local r -degree structures

Sr = (S/≡r , ≤)

for a (usually countable) subfamily S ⊂ P(ω).

Ste�en Lempp Degree Structures and Their Finite Substructures



De�nitions and Examples
Degree Theory

Fragments of the Theory

Reducibilities and Degrees
Examples of Degree Structures

We work with subsets of N (usually denoted as ω) and study their
relative computational complexity.

De�nition

A reducibility is a transitive re�exive relation ≤r on P(ω) (so
that A ≤r B expresses that B �can compute� A).

A,B ⊆ ω are r -equivalent (written A ≡r B) if A ≤r B and
B ≤r A. (A and B have �equal computational content�.)

The r -degree of A is degr (A) = {B | A ≡r B}.

The global r -degree structure is the partial order

Dr = (P(ω)/≡r , ≤),

where ≤ is induced by the pre-partial order ≤r .
Sometimes, we consider local r -degree structures

Sr = (S/≡r , ≤)

for a (usually countable) subfamily S ⊂ P(ω).

Ste�en Lempp Degree Structures and Their Finite Substructures



De�nitions and Examples
Degree Theory

Fragments of the Theory

Reducibilities and Degrees
Examples of Degree Structures

We work with subsets of N (usually denoted as ω) and study their
relative computational complexity.

De�nition

A reducibility is a transitive re�exive relation ≤r on P(ω) (so
that A ≤r B expresses that B �can compute� A).

A,B ⊆ ω are r -equivalent (written A ≡r B) if A ≤r B and
B ≤r A. (A and B have �equal computational content�.)

The r -degree of A is degr (A) = {B | A ≡r B}.
The global r -degree structure is the partial order

Dr = (P(ω)/≡r , ≤),

where ≤ is induced by the pre-partial order ≤r .

Sometimes, we consider local r -degree structures

Sr = (S/≡r , ≤)

for a (usually countable) subfamily S ⊂ P(ω).

Ste�en Lempp Degree Structures and Their Finite Substructures



De�nitions and Examples
Degree Theory

Fragments of the Theory

Reducibilities and Degrees
Examples of Degree Structures

We work with subsets of N (usually denoted as ω) and study their
relative computational complexity.

De�nition

A reducibility is a transitive re�exive relation ≤r on P(ω) (so
that A ≤r B expresses that B �can compute� A).

A,B ⊆ ω are r -equivalent (written A ≡r B) if A ≤r B and
B ≤r A. (A and B have �equal computational content�.)

The r -degree of A is degr (A) = {B | A ≡r B}.
The global r -degree structure is the partial order

Dr = (P(ω)/≡r , ≤),

where ≤ is induced by the pre-partial order ≤r .
Sometimes, we consider local r -degree structures

Sr = (S/≡r , ≤)

for a (usually countable) subfamily S ⊂ P(ω).

Ste�en Lempp Degree Structures and Their Finite Substructures



De�nitions and Examples
Degree Theory

Fragments of the Theory

Reducibilities and Degrees
Examples of Degree Structures

Many reducibilities have been considered in classical computability
theory, theoretical computer science and even set theory:

A ≤m B if there is a computable function f such that x ∈ A i�
f (x) ∈ B .

A ≤T B if there is a Turing functional Φ with A = Φ(B).

A ≤e B if there is an enumeration operator Φ with A = Φ(B).

A ≤p
m B if A ≤m B via a polynomial-time function f .

A ≤p
T B if A ≤T B via a polynomial-time functional Φ.

A ≤arith B if A is arithmetical in B (i.e., A ≤T B(n) for some
n ∈ ω).

A ≤hyp B if A is hyperarithmetical in B (i.e., A ≤T B(α) for
some α < ωB

1 ).

A ≤L B if A is constructible from B (i.e., A ∈ L[B]).

All these lead to global (and many local) degree structures.
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Basics
Complexity of Degree Structures

Degree theory studies degree structures as algebraic objects,
i.e., as partial orders, sometimes in a richer language.
For most �natural� degree structures D, we have:

D has a least element 0D.

Local degree structures have a greatest element, global degree
structures do not.

D is locally countable, i.e., any degree has at most countably
many predecessors.

D is an upper semilattice (but usually not a lattice),
i.e., D has a join operation deg(A) ∪ deg(B) = deg(A⊕ B),
where A⊕ B = {2x | x ∈ A} ∪ {2x + 1 | x ∈ B}.
Most global degree structures support a �jump� operation a 7→
a′ such that a < a′, and a ≤ b implies a′ ≤ b′.
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�Natural� degree structures D tend to be very complicated and
usually follow this pattern:

The �rst-order theory of the partial order D is undecidable;
in fact, it usually is as complicated as second-order arithmetic
(for global degree structures) or �rst-order arithmetic (for
countable local degree structures).

Therefore, computability theorists often study �fragments� of the
�rst-order theory, determined by a bound on the quanti�er depth of
the formulas:

The ∃-theory of D is decidable (since all �nite partial orders
embed into D).

The ∀∃-theory of D can �often� be shown to be decidable
(more later).

The ∃∀∃-theory of D can �often� be shown to be undecidable
(more later).
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degree
structure

complexity:
1st or 2nd
order arithmetic

∃- or ∀∃-
fragment
decidable

∃∀∃-
fragment
undecidable

Dm
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The undecidability of the ∃∀∃-theory is usually proved using the

Nies Transfer Lemma 1996 (special case)

If a class C of �nite structures is ∃-de�nable with parameters in a
degree structure D, and the common ∀∃∀-theory of C is hereditarily
undecidable, then the ∃∀∃-theory of D is undecidable.

The class C used in the results cited above is

the class of all �nite distributive lattices coded as initial
segments for the m-degrees, the c.e. m-degrees, and the
Turing degrees; and
the class of all �nite bipartite graphs without equality with
nonempty left and right domain in delicate coding arguments
for the c.e. Turing degrees, for the enumeration degrees and
for the Σ0

2-enumeration degrees.

For the enumeration degrees, one can also code all �nite distributive
lattices as intervals (Lempp, Slaman, M. Soskova 2021).
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Deciding the ∀∃-theory of D amounts to giving a uniform decision
procedure to the following

Problem (for deciding the ∀∃-theory of D)

Given �nite partial orders P and Qi ⊇ P (for i < n), does every
embedding of P into D extend to an embedding of Qi into D for
some i < n (where i may depend on the embedding of P)?

For the m-degrees and the c.e. m-degrees, one extends P minimally
to a �nite distributive lattice L and embeds it into D as an initial
segment; now an embedding of L can be extended to an
embedding of a �nite partial order Qi ⊇ L i� no element of Qi is
below any element of L, and Qi respects joins in L.
For the Turing degrees, one proceeds similarly but with a �nite
lattice L minimally extending P.
For the ∆0

2-Turing degrees, embed L both as an initial segment;
and also L − {1} as an initial segment, mapping 1 to 0′T .
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Two natural subproblems of the ∀∃-theory are the following:

Extension of Embeddings Problem

Given �nite partial orders P and Q ⊇ P, does every embedding
of P into D extend to an embedding of Q into D?

Lattice Embeddings Problem

Which �nite lattices L can be embedded into D (preserving not
only partial order but also join and meet)?

The EE problem is decidable for the c.e. Turing degrees
(Slaman/Soare 2001), for the enumeration degrees
(Lempp/Slaman/Soskova 2021), and for the Σ0

2-enumeration
degrees (Lempp/Slaman/Sorbi 2005).
The LE problem remains open for the c.e. Turing degrees, but is
decidable for the Σ0

2-enumeration degrees and for the enumeration
degrees (Lempp/Sorbi 2002: all �nite lattices embed).
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Given the di�culty of the overall problem of deciding the ∀∃-theory
of the enumeration degrees and of the Σ0

2-enumeration degrees, we
are currently concentrating on the following subproblem of the
Extension of Embeddings Problem for the Σ0

2-enumeration degrees:

1-Point Extensions of Antichains

Decide, given a �nite antichain P = {a0, . . . , an} and 1-point
extensions QS = {a0, . . . , an, xS} and QT = {a0, . . . , an, xT} for
some nonempty subsets S ,T ⊆ {0, . . . , n} (where xS < ai i� i ∈ S ;
and xT > ai i� i ∈ T ),

whether any embedding of P can be
extended to an embedding of QS for some such S or to an
embedding of QT for some such T (not mapping the new element
to 0e or 0′e)?

(It is always possible to extend an embedding of a �nite
antichain P to an embedding of the antichain Q∅ = Q∅.)

Ste�en Lempp Degree Structures and Their Finite Substructures



De�nitions and Examples
Degree Theory

Fragments of the Theory

∃∀∃-Theory
∀∃-Theory
Two Subproblems of the ∀∃-Theory
A Subsubproblem of the ∀∃-Theory of the Σ0

2
-e-Degrees

Given the di�culty of the overall problem of deciding the ∀∃-theory
of the enumeration degrees and of the Σ0

2-enumeration degrees, we
are currently concentrating on the following subproblem of the
Extension of Embeddings Problem for the Σ0

2-enumeration degrees:

1-Point Extensions of Antichains

Decide, given a �nite antichain P = {a0, . . . , an} and 1-point
extensions QS = {a0, . . . , an, xS} and QT = {a0, . . . , an, xT} for
some nonempty subsets S ,T ⊆ {0, . . . , n} (where xS < ai i� i ∈ S ;
and xT > ai i� i ∈ T ), whether any embedding of P can be
extended to an embedding of QS for some such S or to an
embedding of QT for some such T (not mapping the new element
to 0e or 0′e)?

(It is always possible to extend an embedding of a �nite
antichain P to an embedding of the antichain Q∅ = Q∅.)

Ste�en Lempp Degree Structures and Their Finite Substructures



De�nitions and Examples
Degree Theory

Fragments of the Theory

∃∀∃-Theory
∀∃-Theory
Two Subproblems of the ∀∃-Theory
A Subsubproblem of the ∀∃-Theory of the Σ0

2
-e-Degrees

Given the di�culty of the overall problem of deciding the ∀∃-theory
of the enumeration degrees and of the Σ0

2-enumeration degrees, we
are currently concentrating on the following subproblem of the
Extension of Embeddings Problem for the Σ0

2-enumeration degrees:

1-Point Extensions of Antichains

Decide, given a �nite antichain P = {a0, . . . , an} and 1-point
extensions QS = {a0, . . . , an, xS} and QT = {a0, . . . , an, xT} for
some nonempty subsets S ,T ⊆ {0, . . . , n} (where xS < ai i� i ∈ S ;
and xT > ai i� i ∈ T ), whether any embedding of P can be
extended to an embedding of QS for some such S or to an
embedding of QT for some such T (not mapping the new element
to 0e or 0′e)?

(It is always possible to extend an embedding of a �nite
antichain P to an embedding of the antichain Q∅ = Q∅.)

Ste�en Lempp Degree Structures and Their Finite Substructures



De�nitions and Examples
Degree Theory

Fragments of the Theory

∃∀∃-Theory
∀∃-Theory
Two Subproblems of the ∀∃-Theory
A Subsubproblem of the ∀∃-Theory of the Σ0

2
-e-Degrees

The context for our subproblem is the two following earlier results:

Theorem (Ahmad 1989 (cf. Ahmad, Lachlan 1998))

1 There is an Ahmad pair of Σ0
2-enumeration degrees (a, b), i.e.,

there are incomparable degrees a and b such that any degree
v < a is ≤ b.

2 There is no symmetric Ahmad pair of Σ0
2-enumeration degrees,

i.e., there are no incomparable degrees a and b such that any
degree v < a is ≤ b, and any degree w < b is ≤ a.

These are examples of ∀∃-statements blocking P ⊂ Q0 but not
P ⊂ Q0,Q1:

P Q0 Q1
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We can handle the case of QS :

Theorem in Progress (Goh, Lempp, Ng, M. Soskova)

Fix n > 1 and S ⊆ P({0, . . . , n})− {∅}.
Let S0 = {i ≤ n | {i} ∈ S}, and let S1 = {0, . . . , n} − S0.

Then some embedding of P into De(≤ 0′e) cannot be extended to
an embedding of QS for any S ∈ S i�

1 S0 = ∅; or
2

⋃
S ≠ {0, 1, . . . , n}; or

3 S1 ̸= ∅ and there is an assignment ν : S0 → P(S1)− {∅}, i.e.,
a function such that

for each i ∈ S0, {i} ∪ ν(i) /∈ S, and

for each F ⊆ S0 with |F | > 1, we have
⋂
{ν(i) | i ∈ F} /∈ S.

The proof extends both results of Ahmad and combines them with
minimal pair techniques.
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We can handle the case of QS :
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2

⋃
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As for QT , we have to take into account the following

Theorem (Kalimullin, Lempp, Ng, Yamaleev 2022)

There is no cupping Ahmad pair, i.e., an Ahmad pair (a, b) with
a ∪ b = 0′e .

We conjecture that this is the only additional obstruction when
considering extensions by points above an antichain:

Conjecture

Fix n > 1 and S, T ⊆ P({0, . . . , n})− {∅}.
Then some embedding of P into De(≤ 0′e) cannot be extended to
an embedding of QS for any S ∈ S or of QT for any T ∈ T i�

QS satis�es the conditions of the Theorem in Progress, and

any T ∈ T contains only one element, or contains two
elements i , j with j ∈ ν(i) (from the Theorem in Progress).
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Thanks!
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