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Reducibilities and Degrees
Examples of Degree Structures

We work with subsets of N (usually denoted as w) and study their
relative computational complexity.

o A reducibility is a transitive reflexive relation <, on P(w) (so
that A <, B expresses that B “can compute” A).

e A B C w are r-equivalent (written A=, B) if A<, B and
B <, A. (A and B have “equal computational content”.)

@ The r-degree of A'is deg,(A) = {B | A=, B}.
@ The global r-degree structure is the partial order
D = (P(w)/=r, <),
where < is induced by the pre-partial order <,.
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Definitions and Examples

Reducibilities and Degrees
Examples of Degree Structures

We work with subsets of N (usually denoted as w) and study their
relative computational complexity.

Definition

o A reducibility is a transitive reflexive relation <, on P(w) (so
that A <, B expresses that B “can compute” A).

e A B C w are r-equivalent (written A=, B) if A<, B and
B <, A. (A and B have “equal computational content”.)
@ The r-degree of A'is deg,(A) = {B | A=, B}.
@ The global r-degree structure is the partial order
Dy = (P(w)/=r, S),
where < is induced by the pre-partial order <,.
Sometimes, we consider local r-degree structures

Sr=(8/=r, <)
for a (usually countable) subfamily S € P(w).
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Many reducibilities have been considered in classical computability
theory, theoretical computer science and even set theory:

o A <,, B if there is a computable function f such that x € A iff
f(x) e B.

A <7 B if there is a Turing functional ® with A = ®(B).

A <. B if there is an enumeration operator ® with A = ®(B).
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Definitions and Examples Reducibilities and Degrees

Examples of Degree Structures

Many reducibilities have been considered in classical computability
theory, theoretical computer science and even set theory:

o A <,, B if there is a computable function f such that x € A iff

f(x) e B.

A <7 B if there is a Turing functional ® with A = ®(B).

A <. B if there is an enumeration operator ® with A = ®(B).

A <b B if A<, B via a polynomial-time function f.

A <% B if A <t B via a polynomial-time functional ®.

A <.nien B if A'is arithmetical in B (i.e., A <7 B for some

ne w).

o A<y, Bif Ais hyperarithmetical in B (i.e., A<t B(®) for
some o < wP).

e A<, Bif Ais constructible from B (i.e., A € L[B]).

All these lead to global (and many local) degree structures.
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Degree Theory Egsics

Complexity of Degree Structures

Degree theory studies degree structures as algebraic objects,
i.e., as partial orders, sometimes in a richer language.
For most “natural” degree structures D, we have:
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Degree Theory Egsics

Complexity of Degree Structures

Degree theory studies degree structures as algebraic objects,
i.e., as partial orders, sometimes in a richer language.
For most “natural” degree structures D, we have:

@ D has a least element 0p.

o Local degree structures have a greatest element, global degree
structures do not.

@ D is locally countable, i.e., any degree has at most countably
many predecessors.

@ D is an upper semilattice (but usually not a lattice),
i.e., D has a join operation deg(A) U deg(B) = deg(A & B),
where A®@ B ={2x | xe AfU{2x+ 1| x € B}.
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Basics
Complexity of Degree Structures

Degree Theory

Degree theory studies degree structures as algebraic objects,
i.e., as partial orders, sometimes in a richer language.
For most “natural” degree structures D, we have:

@ D has a least element 0p.

o Local degree structures have a greatest element, global degree
structures do not.

@ D is locally countable, i.e., any degree has at most countably
many predecessors.

@ D is an upper semilattice (but usually not a lattice),
i.e., D has a join operation deg(A) U deg(B) = deg(A & B),
where A®@ B ={2x | xe AfU{2x+ 1| x € B}.

@ Most global degree structures support a “jump” operation a +—
a’ such that a < a’, and a < b implies a’ < b'.
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Complexity of Degree Structures

“Natural” degree structures D tend to be very complicated and
usually follow this pattern:
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in fact, it usually is as complicated as second-order arithmetic
(for global degree structures) or first-order arithmetic (for
countable local degree structures).
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Degree Theory sl

Complexity of Degree Structures

“Natural” degree structures D tend to be very complicated and
usually follow this pattern:
@ The first-order theory of the partial order D is undecidable;
in fact, it usually is as complicated as second-order arithmetic
(for global degree structures) or first-order arithmetic (for
countable local degree structures).
Therefore, computability theorists often study “fragments” of the
first-order theory, determined by a bound on the quantifier depth of
the formulas:
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countable local degree structures).
Therefore, computability theorists often study “fragments” of the
first-order theory, determined by a bound on the quantifier depth of
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@ The I-theory of D is decidable (since all finite partial orders
embed into D).
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Degree Theory
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usually follow this pattern:
@ The first-order theory of the partial order D is undecidable;
in fact, it usually is as complicated as second-order arithmetic
(for global degree structures) or first-order arithmetic (for
countable local degree structures).
Therefore, computability theorists often study “fragments” of the
first-order theory, determined by a bound on the quantifier depth of
the formulas:
@ The I-theory of D is decidable (since all finite partial orders
embed into D).
@ The V3-theory of D can “often” be shown to be decidable
(more later).
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Basics
Complexity of Degree Structures

Degree Theory

“Natural” degree structures D tend to be very complicated and
usually follow this pattern:
@ The first-order theory of the partial order D is undecidable;
in fact, it usually is as complicated as second-order arithmetic
(for global degree structures) or first-order arithmetic (for
countable local degree structures).
Therefore, computability theorists often study “fragments” of the
first-order theory, determined by a bound on the quantifier depth of
the formulas:
@ The I-theory of D is decidable (since all finite partial orders
embed into D).
@ The V3-theory of D can “often” be shown to be decidable
(more later).
@ The JV3-theory of D can “often” be shown to be undecidable
(more later).
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Degree Theory B

Complexity of Degree Structures

complexity: 3- or V3- Jv4-
degree
truct 1st or 2nd fragment fragment
structure order arithmetic | decidable undecidable
2nd: Nerode, e
D Shore 1980 \EgDegte" Nies 1996

Dm(<0),) | 1st: Nies 1994
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Degree Theory

Basics

Complexity of Degree Structures

complexity: 3- or V3- Jv4-
degree
truct 1st or 2nd fragment fragment
structure order arithmetic | decidable undecidable
2nd: Nerode, e
Pm Shore 1980 \EgDegte" Nies 1996
Dm(<0),) | 1st: Nies 1994
D 2nd: V3: Lerman/
T Simpson 1977 Shore 1978 Lerman,
V3: Lerman Schmerl 1983
! . [}
D1(<L 07%) | 1st: Shore 1981 Shore 1988
1st: Harrington, _ Lempp, Nies,
Dr(ce) Slaman 1984 F Sacks 1963 Slaman 1998
D 2nd: Slaman,
e : .
Woodin 1997 3: Lagemann Kent 2006
Du(< 0.) 1st: Gancheyv, 1972
e\=Te M. Soskova 2012
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3V3-Theory
vV3-Theory

Two Subproblems of the V3-Theory

Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg-e-Degrees

The undecidability of the 3V3-theory is usually proved using the

Nies Transfer Lemma 1996 (special case)

If a class C of finite structures is 3-definable with parameters in a
degree structure D, and the common V3V-theory of C is hereditarily
undecidable, then the 3V3-theory of D is undecidable.
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3V3-Theory
vV3-Theory

Two Subproblems of the V3-Theory

Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg-e-Degrees

The undecidability of the 3V3-theory is usually proved using the

Nies Transfer Lemma 1996 (special case)

If a class C of finite structures is 3-definable with parameters in a
degree structure D, and the common V3V-theory of C is hereditarily
undecidable, then the 3V3-theory of D is undecidable.

The class C used in the results cited above is
o the class of all finite distributive lattices coded as initial
segments for the m-degrees, the c.e. m-degrees, and the
Turing degrees;
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3V3-Theory
vV3-Theory

Two Subproblems of the heory

Fragments of the Theory A Subsubproblem of the v heory of the Zg-e-Degrees

The undecidability of the 3V3-theory is usually proved using the

Nies Transfer Lemma 1996 (special case)

If a class C of finite structures is 3-definable with parameters in a
degree structure D, and the common V3V-theory of C is hereditarily
undecidable, then the 3V3-theory of D is undecidable.

The class C used in the results cited above is

@ the class of all finite distributive lattices coded as initial
segments for the m-degrees, the c.e. m-degrees, and the
Turing degrees; and

@ the class of all finite bipartite graphs without equality with
nonempty left and right domain in delicate coding arguments
for the c.e. Turing degrees, for the enumeration degrees and
for the 9-enumeration degrees.
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3V3-Theory
vV3-Theory

Two Subproblems of the heory

Fragments of the Theory A Subsubproblem of the v heory of the Zg-e-Degrees

The undecidability of the 3V3-theory is usually proved using the

Nies Transfer Lemma 1996 (special case)

If a class C of finite structures is 3-definable with parameters in a
degree structure D, and the common V3V-theory of C is hereditarily
undecidable, then the 3V3-theory of D is undecidable.

The class C used in the results cited above is
@ the class of all finite distributive lattices coded as initial
segments for the m-degrees, the c.e. m-degrees, and the
Turing degrees; and
@ the class of all finite bipartite graphs without equality with
nonempty left and right domain in delicate coding arguments
for the c.e. Turing degrees, for the enumeration degrees and
for the 9-enumeration degrees.
For the enumeration degrees, one can also code all finite distributive
lattices as intervals (Lempp, Slaman, M. Soskova 2021).



3V3-Theory
V3-Theory

Two Subproblems of the V3-Theory
Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg-e-Degrees

Deciding the V3-theory of D amounts to giving a uniform decision
procedure to the following

Problem (for deciding the V3-theory of D)

Given finite partial orders P and Q; O P (for i < n), does every
embedding of P into D extend to an embedding of Q; into D for
some i < n (where i may depend on the embedding of P)?
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Two Subproblems of the V3-Theory

Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg-e-Degrees

Deciding the V3-theory of D amounts to giving a uniform decision
procedure to the following

Problem (for deciding the V3-theory of D)

Given finite partial orders P and Q; O P (for i < n), does every
embedding of P into D extend to an embedding of Q; into D for
some i < n (where i may depend on the embedding of P)?

For the m-degrees and the c.e. m-degrees, one extends P minimally
to a finite distributive lattice £ and embeds it into D as an initial
segment; now an embedding of £ can be extended to an
embedding of a finite partial order Q; D L iff no element of Q; is
below any element of £, and Q; respects joins in L.
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Two Subproblems of the heory

Fragments of the Theory A Subsubproblem of the v heory of the Zg-e-Degrees

Deciding the V3-theory of D amounts to giving a uniform decision
procedure to the following

Problem (for deciding the V3-theory of D)

Given finite partial orders P and Q; O P (for i < n), does every
embedding of P into D extend to an embedding of Q; into D for
some i < n (where i may depend on the embedding of P)?

For the m-degrees and the c.e. m-degrees, one extends P minimally
to a finite distributive lattice £ and embeds it into D as an initial
segment; now an embedding of £ can be extended to an
embedding of a finite partial order Q; D L iff no element of Q; is
below any element of £, and Q; respects joins in L.

For the Turing degrees, one proceeds similarly but with a finite
lattice £ minimally extending P.
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Theory
heory

wo Subproblems of the heory

Fragments of the Theory A Subsubproblem of the v heory of the Zg-e-Degrees

Deciding the V3-theory of D amounts to giving a uniform decision
procedure to the following

Problem (for deciding the V3-theory of D)

Given finite partial orders P and Q; O P (for i < n), does every
embedding of P into D extend to an embedding of Q; into D for
some i < n (where i may depend on the embedding of P)?

For the m-degrees and the c.e. m-degrees, one extends P minimally
to a finite distributive lattice £ and embeds it into D as an initial
segment; now an embedding of £ can be extended to an
embedding of a finite partial order Q; D L iff no element of Q; is
below any element of £, and Q; respects joins in L.

For the Turing degrees, one proceeds similarly but with a finite
lattice £ minimally extending P.

For the AS-Turing degrees, embed £ both as an initial segment;
and also £ — {1} as an initial segment, mapping 1 to 0.
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Two Subproblems of the V3-Theory

Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg-e-Degrees

Two natural subproblems of the V3-theory are the following:

Extension of Embeddings Problem

Given finite partial orders P and Q O P, does every embedding
of P into D extend to an embedding of Q into D7
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Two Subproblems of the V3-Theory

Fragments of the Theory A Subsubproblem of the V3-Theory of the ZO e-Degrees

Two natural subproblems of the V3-theory are the following:

Extension of Embeddings Problem

Given finite partial orders P and Q O P, does every embedding
of P into D extend to an embedding of Q into D7

Lattice Embeddings Problem

Which finite lattices £ can be embedded into D (preserving not
only partial order but also join and meet)?
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Theory
heory

wo Subproblems of the V3-Theory

Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg-e-Degrees

Two natural subproblems of the V3-theory are the following:

Extension of Embeddings Problem

Given finite partial orders P and Q O P, does every embedding
of P into D extend to an embedding of Q into D7

Lattice Embeddings Problem

Which finite lattices £ can be embedded into D (preserving not
only partial order but also join and meet)?

The EE problem is decidable for the c.e. Turing degrees
(Slaman/Soare 2001), for the enumeration degrees
(Lempp/Slaman/Soskova 2021), and for the ¥ 3-enumeration
degrees (Lempp/Slaman/Sorbi 2005).
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3V3-Theory
vV3-Theory

Two Subproblems of the V3-Theory

Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg-e-Degrees

Two natural subproblems of the V3-theory are the following:

Extension of Embeddings Problem

Given finite partial orders P and Q O P, does every embedding
of P into D extend to an embedding of Q into D7

Lattice Embeddings Problem

Which finite lattices £ can be embedded into D (preserving not
only partial order but also join and meet)?

The EE problem is decidable for the c.e. Turing degrees
(Slaman/Soare 2001), for the enumeration degrees
(Lempp/Slaman/Soskova 2021), and for the ¥ 3-enumeration
degrees (Lempp/Slaman/Sorbi 2005).

The LE problem remains open for the c.e. Turing degrees, but is
decidable for the ¥3-enumeration degrees and for the enumeration
degrees (Lempp/Sorbi 2002: all finite lattices embed).



% H-Theorv
Two Subproblems of the V3-Theory
A Subsubproblem of the V3-Theory of the Zo -e-Degrees

Fragments of the Theory

Given the difficulty of the overall problem of deciding the V3-theory
of the enumeration degrees and of the ¥3-enumeration degrees, we
are currently concentrating on the following subproblem of the

Extension of Embeddings Problem for the ¥3-enumeration degrees:

1-Point Extensions of Antichains

Decide, given a finite antichain P = {ay, ..., an} and 1-point
extensions Qs = {ao,...,an,xs} and Q7 = {ap,...,a,,x"} for
some nonempty subsets S, T C {0,...,n} (where xs < a; iff i € S;
and xT > a;iff i € T),
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Two Subproblems of the heory
A Subsubproblem of the heory of the Zg—e-Degrees

Fragments of the Theory

Given the difficulty of the overall problem of deciding the V3-theory
of the enumeration degrees and of the ¥3-enumeration degrees, we
are currently concentrating on the following subproblem of the

Extension of Embeddings Problem for the ¥3-enumeration degrees:

1-Point Extensions of Antichains

Decide, given a finite antichain P = {ay, ..., an} and 1-point
extensions Qs = {ao,...,an,xs} and Q7 = {ap,...,a,,x"} for
some nonempty subsets S, T C {0,...,n} (where xs < a; iff i € S;
and xT > a; iffi € T), whether any embedding of P can be
extended to an embedding of Qs for some such S or to an
embedding of Q7 for some such T (not mapping the new element
to 0 or 0.)7
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A Subsubproblem of the V3-Theory of the Zg—e-Degrees

Fragments of the Theory

Given the difficulty of the overall problem of deciding the V3-theory
of the enumeration degrees and of the ¥3-enumeration degrees, we
are currently concentrating on the following subproblem of the

Extension of Embeddings Problem for the ¥3-enumeration degrees:

1-Point Extensions of Antichains

Decide, given a finite antichain P = {ay, ..., an} and 1-point
extensions Qs = {ao,...,an,xs} and Q7 = {ap,...,a,,x"} for
some nonempty subsets S, T C {0,...,n} (where xs < a; iff i € S;
and xT > a; iffi € T), whether any embedding of P can be
extended to an embedding of Qs for some such S or to an
embedding of Q7 for some such T (not mapping the new element
to 0 or 0.)7

(It is always possible to extend an embedding of a finite
antichain P to an embedding of the antichain Qy = Qm.)
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Two Subp‘roblems of the V3-Theory

Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg—e-Degrees

The context for our subproblem is the two following earlier results:

Theorem (Ahmad 1989 (cf. Ahmad, Lachlan 1998))

© There is an Ahmad pair of ¥3-enumeration degrees (a,b), i.e.,
there are incomparable degrees a and b such that any degree
v<ais<b.
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Two Subproblems of the V3-Theory

Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg—e-Degrees

The context for our subproblem is the two following earlier results:

Theorem (Ahmad 1989 (cf. Ahmad, Lachlan 1998))

© There is an Ahmad pair of ¥3-enumeration degrees (a,b), i.e.,
there are incomparable degrees a and b such that any degree
v<ais<b.

@ There is no symmetric Ahmad pair of Zg—enumeration degrees,
i.e., there are no incomparable degrees a and b such that any
degree v < a is < b, and any degree w < b is < a.
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Two Subproblems of the V3-Theory

Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg—e-Degrees

The context for our subproblem is the two following earlier results:

Theorem (Ahmad 1989 (cf. Ahmad, Lachlan 1998))

© There is an Ahmad pair of ¥3-enumeration degrees (a,b), i.e.,
there are incomparable degrees a and b such that any degree
v<ais<b.

@ There is no symmetric Ahmad pair of Zg—enumeration degrees,
i.e., there are no incomparable degrees a and b such that any
degree v < a is < b, and any degree w < b is < a.

These are examples of V3-statements blocking P C Qg but not

P C Qo, Q1:
a b a b a b
° ° I °® ° I
P Qo 91
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Two Subproblems of the V3-Theory

Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg—e-Degrees

We can handle the case of Qg:

Theorem in Progress (Goh, Lempp, Ng, M. Soskova)
Fix n>1and S C P({0,...,n}) — {0}.
Let So ={i <n|{i} €S}, and let 5 ={0,...,n} — So.
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Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg—e-Degrees

We can handle the case of Qg:

Theorem in Progress (Goh, Lempp, Ng, M. Soskova)

Fix n>1and S C P({0,...,n}) — {0}.

Let So ={i <n|{i} €S}, and let 5 ={0,...,n} — So.

Then some embedding of P into De(< 0,) cannot be extended to
an embedding of Qg for any S € S iff

Q@ So=0;o0r
Q@ US#{0,1,...,n}; or
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Two Subp'roblems of the V3-Theory

Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg—e-Degrees

We can handle the case of Qg:

Theorem in Progress (Goh, Lempp, Ng, M. Soskova)

Fix n>1and S C P({0,...,n}) — {0}.

Let So ={i <n|{i} €S}, and let 5 ={0,...,n} — So.

Then some embedding of P into De(< 0,) cannot be extended to
an embedding of Qg for any S € S iff

Q So=0;or
Q@ US#{0,1,...,n}; or
© S1 # 0 and there is an assignment v : Sy — P(S1) — {0}, i.e.,
a function such that
e foreach i€ Sy, {i}Uv(i) ¢S, and
o for each F C Sy with |F| > 1, we have {v(i)|i € F} ¢ S.
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Two Subproblems of the V3-Theory

Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg—e-Degrees

We can handle the case of Qg:

Theorem in Progress (Goh, Lempp, Ng, M. Soskova)

Fix n>1and S C P({0,...,n}) — {0}.

Let So={i<n|{i} €S}, and let Sy ={0,...,n} — So.

Then some embedding of P into De(< 0,) cannot be extended to
an embedding of Qg for any S € S iff

Q So=0;or
Q@ US#{0,1,...,n}; or
© S1 # 0 and there is an assignment v : Sy — P(S1) — {0}, i.e.,
a function such that
e foreach i€ Sy, {i}Uv(i) ¢S, and
o for each F C Sy with |F| > 1, we have {v(i)|i € F} ¢ S.

The proof extends both results of Ahmad and combines them with
minimal pair techniques.
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Fragments of the Theory A Subsubproblem of the V3-Theory of the Zg—e-Degrees

As for QT , we have to take into account the following

Theorem (Kalimullin, Lempp, Ng, Yamaleev 2022)

There is no cupping Ahmad pair, i.e., an Ahmad pair (a,b) with
aUb=0..
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Fragments of the Theory A Subsubproblem of the heory of the Zg—e-Degrees

As for QT , we have to take into account the following

Theorem (Kalimullin, Lempp, Ng, Yamaleev 2022)

There is no cupping Ahmad pair, i.e., an Ahmad pair (a,b) with
aUb=0..

We conjecture that this is the only additional obstruction when
considering extensions by points above an antichain:

Fix n>1and S,7 € P({0,...,n})— {0}.
Then some embedding of P into De(< 0,) cannot be extended to
an embedding of Qs for any S € S or of Q7 for any T € T iff

@ Qg satisfies the conditions of the Theorem in Progress, and
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Fragments of the Theory A Subsubproblem of the heory of the Zg—e-Degrees

As for QT , we have to take into account the following

Theorem (Kalimullin, Lempp, Ng, Yamaleev 2022)

There is no cupping Ahmad pair, i.e., an Ahmad pair (a,b) with
aUb=0..

We conjecture that this is the only additional obstruction when
considering extensions by points above an antichain:

Fix n>1and S,7 € P({0,...,n})— {0}.
Then some embedding of P into De(< 0,) cannot be extended to
an embedding of Qs for any S € S or of Q7 for any T € T iff

@ Qg satisfies the conditions of the Theorem in Progress, and

@ any T € T contains only one element, or contains two
elements 7, j with j € v(i) (from the Theorem in Progress).
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Thanks!
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