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+ A powerful, nonparametric prediction algorithm, which often outperforms 
deep learning on moderate-sized tabular datasets

Why Random Forests?
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“ ”… the method that performs consistently well across all dimensions is random forests, 
followed by neural nets, boosted trees, and SVMs.  [11 datasets]

- Caruana, Karampatziakis, Yessenalina (2008)

“ ”The classifiers most likely to be the bests are the random forest versions.  
[121 data sets, 179 models]

- Fernandez-Delgado, Cernadas, Barro, Amorim (2014)

“ ”Why do tree-based models still outperform deep learning on tabular data? 
… tree-based models [i.e., random forests, XGBoost] remain state-of-the-art on 
medium-sized data (∼10K samples) even without accounting for their superior speed.  
[45 data sets]

- Grinsztajn, Oyallon, Varoquaux (2022)



Why Random Forests?
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+ A powerful, nonparametric prediction algorithm, which often outperforms 
deep learning on moderate-sized tabular datasets

+ Numerous feature importance measures exist to enable interpretability 
[Breiman 2001, Ishwaran 2007, Epifanio 2017, Kazemitabar et al. 2017, Li et al. 2019, Lundberg et al. 
2020, Klusowski and Tian 2021, Saabas 2022, and more…]

○ Mean Decrease in Impurity (MDI): most popular in practice (and default feature 
importance in sklearn) [Breiman et al. 1984]



A collection of decision trees, where 

Random Forest (RF) [Breiman 2001]
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Leo Breiman. "Random forests." Machine learning (2001)

training 
data

?

+     …    +( )/ # trees



A collection of decision trees, where 

● each tree is fitted on a different bootstrap version of the data
● features are subsampled at each node X1 X2

X3 X4
X5

Random Forest (RF) [Breiman 2001]
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Leo Breiman. "Random forests." Machine learning (2001)



Mean Decrease in Impurity (MDI)
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Impurity decrease at 

“Measures decrease in variance from making the split”

For each feature k, MDI(k) is the weighted sum of impurity decreases across nodes that split on Xk, e.g.,



Unstable in low-signal problems

Biased against features are highly correlated or have low entropy

Inefficient measure if additive structure is present

Well-known drawbacks of MDI:

Advantages of MDI:

Conceptually simple

Fast to compute

Mean Decrease in Impurity (MDI)
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Nicodemus, K. K. and Malley, J. D. “Predictor correlation impacts machine learning algorithms: implications for genomic studies.” Bioinformatics (2009)
Nicodemus, K. K. “On the stability and ranking of predictors from random forest variable importance measures.” Briefings in Bioinformatics (2011)
Tan, Y. S., Agarwal, A., and Yu, B. “A cautionary tale on fitting decision trees to data from additive models: generalization lower bounds.” AISTATS (2022)

(Limitation of RF)



Talk outline

1 We develop RF+, a generalization of RFs, 
which improves upon the prediction accuracy of RFs, 
especially when there is smooth additive structure

+ Extensions of RF+, including to the network (or spatial) data setting

2 We develop MDI+, a generalization of MDI,
which provides a general framework for improved interpretations using RF/RF+
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0 We exploit a recent connection between 
decision trees and linear regression



Reinterpreting decision trees 
via linear regression
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Step 1: Obtain engineered “stump” features                 from decision tree

node

Input data 

Connecting decision trees to linear regression
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A new basis using 
supervised tree 
features



Upshot #1: Provides a natural framework for developing a new class of 
prediction models → RF+

Connecting decision trees to linear regression
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Step 2: Fit OLS on stump features

Key Connection: OLS predictions = original tree predictions [Klusowski 2021]

Jason M. Klusowski. "Universal consistency of decision trees in high dimensions." (2021)

assuming tree prediction = mean response per leaf node 
(e.g., in CART)

Upshot #2: Reinterpret MDI via linear regression → MDI+



RF+: 
A generalization of random forests
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+ Why restrict ourselves to only stump features? 
This is the source of RF’s implicit bias against smooth data structures

RF+: A generalization of random forests

13

A decision tree
in RF:

A decision tree
in RF+:

+ Why restrict ourselves to L2 loss?
+ Why not add regularization?



+ Fitted per tree using bootstrappped samples and averaged across trees
+ Ridge penalty generally works well
+ Can apply general loss functions 

(e.g., logistic for classification, robust regression when outliers are present)

RF+: a new class of prediction algorithms, which generalizes RFs

RF+: A generalization of random forests
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RF+ improves prediction accuracy over RF
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(unnormalized) Laplacian 
L = D - A where D = degree matrix

Extending RF+ to network-assisted regression setting
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Network cohesion assumption: 
neighboring nodes have similar 
responses to each other



NeRF+: an extension of RF+ to exploit cohesion between samples in a network

NeRF+: Network-assisted RF+
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In the linear regression setting, network effects can be incorporated through a 
network cohesion penalty [Li et al. (2019)]:

where

Li et al. "Prediction models for network-linked data." Annals of Applied Statistics (2019)

Network
Effects

Network Cohesion
Penalty

Network Cohesion
Penalty

Network
Effects

Linear Nonlinear



NeRF+ improves prediction performance
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NeRF+ improves prediction on Philadelphia crime dataset
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MDI+: 
A generalization of mean decrease in impurity
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MDI+: a flexible framework for computing feature importances using RF/RF+

+ Avoids aforementioned drawbacks of MDI

+ Allows the analyst to tailor the feature importance computation to the 
data/problem structure (e.g., handle outliers, classification vs. regression)

Key idea: MDI can be viewed as an R2 value from a linear regression model

Overview of MDI+
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Reinterpreting MDI as an R2
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Reinterpreting MDI as an R2
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Reinterpreting MDI as an R2
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Reinterpreting MDI as an R2
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Reinterpreting MDI as an R2
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MDI+: A Generalized Mean Decrease in Impurity
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MDI+: A Generalized Mean Decrease in Impurity
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MDI+: A Generalized Mean Decrease in Impurity
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Approximate leave-one-out 
predictions can be computed 
without refitting the RF



MDI+: A Generalized Mean Decrease in Impurity
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Approximate leave-one-out 
predictions can be computed 
without refitting the RF



+ Correlation/entropy bias: MDI+ overcomes correlation and entropy bias 
using out-of-sample prediction

+ Real data-inspired simulations: MDI+ improves feature rankings in various 
regression, classification, and robust regression scenarios
○ Regression: MDI+ with ridge regression as GLM + r2 metric

○ Classification: MDI+ with l2-regularized logistic regression as GLM + log-loss metric

○ Robust regression: MDI+ with regularized Huber regression as GLM + Huber loss metric

+ Two real data case studies: MDI+ identifies well-known gene predictors with 
greater stability than competing methods (for drug response prediction and 
breast cancer subtyping)

Roadmap of Empirical Results
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Regression simulation results
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Regression simulation results
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* X = Splicing dataset



In the presence of outliers
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In the presence of outliers
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Tailoring MDI+ to the problem setting improves feature ranking accuracy

0% outliers 1% outliers 2.5% outliers 5% outliers
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Real Data Case Studies

37

 

Ce
ll 

Li
ne

s 
(n

 =
 4

72
)

Genes
(p = 5000)

Gene Expression 
(via RNASeq)

. . .

Dr
ug

 1

Dr
ug

 2

Dr
ug

 2
4

(AA)

* 24 independent regression problems

Barretina et al. "The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity." Nature (2012)

Predicting cancer drug responses (regression)
Dataset: Cancer Cell Line Encyclopedia [Barretina et al. (2012)]



Real Data Case Studies
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Parker et al. "Supervised risk predictor of breast cancer based on intrinsic subtypes." Journal of Clinical Oncology (2009)

Predicting breast cancer subtypes (classification)
Dataset: The Cancer Genome Atlas (TCGA) [Parker et al. (2009)]

One of five 
PAM50 subtypes:
1) Luminal A
2) Luminal B
3) HER2-enriched
4) Basal-like
5) Normal-like



If we apply the feature importance method to 32 different RF fits (all trained on 
the same real X and y), are the feature rankings accurate and stable?

Case Study Objectives
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Accuracy: MDI+ identified all top gene expression predictors from the original 
CCLE paper [Barretina et al. (2012)]

+ NQO1 gene for 17-AAG; EGFR gene for Erlotinib; ERBB2 gene for Lapatinib; MDM2 gene for 
Nutlin-3; MET, HGF genes for PF2341066

Stability: The feature rankings from MDI+ are more stable across the different 
RF fits, compared to competing methods (MDI, MDI-oob, MDA, TreeSHAP)



MDI+ is more stable w.r.t. randomness in RF fits
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A closer look at the top 5 features shows their ranking distribution is tighter 
(i.e., more stable) for MDI+ relative to competitors.

MDI+ is more stable w.r.t. randomness in RF fits
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Top MDI+ features are predictive of breast cancer subtypes
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+ RF+ and MDI+: provide a flexible random forest-based framework that
○ Overcomes many of the inductive biases of RF/decision trees and limitations of  MDI

○ Allows the analyst to tailor the feature importance computation to the data/problem structure

+ Key building block: rethinking RF/MDI as a linear model

+ Connection between decision trees and linear regression opens the door to 
many interesting future directions
○ A new class of prediction algorithms that leverage the tree basis/stump features

○ Possibility to build upon familiar linear regression tools (e.g., for inference)

Summary and Discussion
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Thank you!
Email: ttang4@nd.edu

Website: tiffanymtang.github.io

Code in imodels python package: https://github.com/csinva/imodels
Preprint (RF+/MDI+): https://arxiv.org/abs/2307.01932 

Preprint (NeRF+): in progress
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Tan

https://github.com/csinva/imodels/tree/master
https://arxiv.org/abs/2307.01932


Appendix
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Correlation bias simulation setup

X generated with block covariance structure

X ~ N(0, Σ) with n = 250, p = 100

5 “Correlated Signal” features (Sig)

45 “Correlated Non-signal” features (C-NSig)

50 “Uncorrelated Non-signal” features (NSig)

y generated from sparse linear function

y = x1 + x2 + x3 + x4 + x5 + ε,    ε ~ N(0, σ2)
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Σ =



GMDI mitigates correlated feature bias
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MDI+ overcomes bias by using 
out-of-sample prediction

MDI ranks non-signal features 
as more important than signal 

features



GMDI mitigates correlated feature bias
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MDI+, MDI-oob, and MDA 
overcome bias by using 

out-of-sample prediction

MDI and TreeSHAP rank 
non-signal features as more 

important than signal features


